Alan Turing at 16 (1928). During the Second World War, Turing was a leading participant in the breaking of German ciphers at Bletchley Park

"The Father of Modern Computer Science, The creator of Bombe, The Enigma Killer..."

School

Turing's parents enrolled him at St Michael's, a day school at 20 Charles Road, St Leonards-on-Sea, at the age of six. The headmistress recognised his talent early on, as did many of his subsequent teachers. Between January 1922 and 1926, Turing was educated at Hazelhurst Preparatory School, an independent school in the village of Frant in Sussex (now East Sussex).In 1926, at the age of 13, he went on to Sherborne School, a boarding independent school in the market town of Sherborne in Dorset. The first day of term coincided with the 1926 General Strike in Britain, but he was so determined to attend, that he rode his bicycle unaccompanied 60 miles (97 km) from Southampton to Sherborne, stopping overnight at an inn. Turing c. 1928 at age 16 Turing's natural inclination towards mathematics and science did not earn him respect from some of the teachers at Sherborne, whose definition of education placed more emphasis on the classics. His headmaster wrote to his parents: "I hope he will not fall between two stools. If he is to stay at public school, he must aim at becoming educated. If he is to be solely a Scientific Specialist, he is wasting his time at a public school".Despite this, Turing continued to show remarkable ability in the studies he loved, solving advanced problems in 1927 without having studied even elementary calculus. In 1928, aged 16, Turing encountered Albert Einstein's work; not only did he grasp it, but it is possible that he managed to deduce Einstein's questioning of Newton's laws of motion from a text in which this was never made explicit.

University and work on computability

After Sherborne, Turing studied as an undergraduate from 1931 to 1934 at King's College, Cambridge,here he was awarded first-class honours in mathematics. In 1935, at the age of 22, he was elected a fellow of King's on the strength of a dissertation in which he proved the central limit theorem.Unknown to the committee, the theorem had already been proven, in 1922, by Jarl Waldemar Lindeberg.A blue plaque at the college was unveiled on the centenary of his birth on 23 June 2012 and is now installed at the college's Keynes Building on King's Parade. In 1936, Turing published his paper "On Computable Numbers, with an Application to the Entscheidungsproblem".It was published in the Proceedings of the London Mathematical Society journal in two parts, the first on 30 November and the second on 23 December.In this paper, Turing reformulated Kurt Gödel's 1931 results on the limits of proof and computation, replacing Gödel's universal arithmetic-based formal language with the formal and simple hypothetical devices that became known as Turing machines. The Entscheidungsproblem (decision problem) was originally posed by German mathematician David Hilbert in 1928. Turing proved that his "universal computing machine" would be capable of performing any conceivable mathematical computation if it were representable as an algorithm. He went on to prove that there was no solution to the decision problem by first showing that the halting problem for Turing machines is undecidable: it is not possible to decide algorithmically whether a Turing machine will ever halt. King's College, Cambridge, where Turing was a student in 1931 and became a Fellow in 1935. The computer room is named after him. Although Turing's proof was published shortly after Alonzo Church's equivalent proof using his lambda calculus, Turing's approach is considerably more accessible and intuitive than Church's.It also included a notion of a 'Universal Machine' (now known as a universal Turing machine), with the idea that such a machine could perform the tasks of any other computation machine (as indeed could Church's lambda calculus). According to the Church–Turing thesis, Turing machines and the lambda calculus are capable of computing anything that is computable. John von Neumann acknowledged that the central concept of the modern computer was due to Turing's paper.To this day, Turing machines are a central object of study in theory of computation. From September 1936 to July 1938, Turing spent most of his time studying under Church at Princeton University,n the second year as a Jane Eliza Procter Visiting Fellow. In addition to his purely mathematical work, he studied cryptology and also built three of four stages of an electro-mechanical binary multiplier.In June 1938, he obtained his PhD from the Department of Mathematics at Princeton;his dissertation, Systems of Logic Based on Ordinals, introduced the concept of ordinal logic and the notion of relative computing, where Turing machines are augmented with so-called oracles, allowing the study of problems that cannot be solved by Turing machines. John von Neumann wanted to hire him as his postdoctoral assistant, but he went back to the United Kingdom./p>

Cryptanalysis

During the Second World War, Turing was a leading participant in the breaking of German ciphers at Bletchley Park. The historian and wartime codebreaker Asa Briggs has said, "You needed exceptional talent, you needed genius at Bletchley and Turing's was that genius." From September 1938, Turing had been working part-time with the Government Code and Cypher School (GC&CS), the British codebreaking organisation. He concentrated on cryptanalysis of the Enigma with Dilly Knox, a senior GC&CS codebreaker.Soon after the July 1939 Warsaw meeting at which the Polish Cipher Bureau had provided the British and French with the details of the wiring of Enigma rotors and their method of decrypting Enigma code messages, Turing and Knox started to work on a less fragile approach to the problem.The Polish method relied on an insecure indicator procedure that the Germans were likely to change, which they did in May 1940. Turing's approach was more general, using crib-based decryption for which he produced the functional specification of the bombe (an improvement of the Polish Bomba). Two cottages in the stable yard at Bletchley Park. Turing worked here in 1939 and 1940, before moving to Hut 8. On 4 September 1939, the day after the UK declared war on Germany, Turing reported to Bletchley Park, the wartime station of GC&CS.Specifying the bombe was the first of five major cryptanalytical advances that Turing made during the war. The others were: deducing the indicator procedure used by the German navy; developing a statistical procedure for making much more efficient use of the bombes dubbed Banburismus; developing a procedure for working out the cam settings of the wheels of the Lorenz SZ 40/42 (Tunny) dubbed Turingery and, towards the end of the war, the development of a portable secure voice scrambler at Hanslope Park that was codenamed Delilah. By using statistical techniques to optimise the trial of different possibilities in the code breaking process, Turing made an innovative contribution to the subject. He wrote two papers discussing mathematical approaches, titled The Applications of Probability to Cryptographyand Paper on Statistics of Repetitions,which were of such value to GC&CS and its successor GCHQ that they were not released to the UK National Archives until April 2012, shortly before the centenary of his birth. A GCHQ mathematician, "who identified himself only as Richard," said at the time that the fact that the contents had been restricted for some 70 years demonstrated their importance, and their relevance to post-war cryptanalysis: said the fact that the contents had been restricted "shows what a tremendous importance it has in the foundations of our subject". ... The papers detailed using "mathematical analysis to try and determine which are the more likely settings so that they can be tried as quickly as possible." ... Richard said that GCHQ had now "squeezed the juice" out of the two papers and was "happy for them to be released into the public domain". Turing had a reputation for eccentricity at Bletchley Park. He was known to his colleagues as "Prof" and his treatise on Enigma was known as the "Prof's Book".According to historian Ronald Lewin, Jack Good, a cryptanalyst who worked with Turing, said of his colleague: In the first week of June each year he would get a bad attack of hay fever, and he would cycle to the office wearing a service gas mask to keep the pollen off. His bicycle had a fault: the chain would come off at regular intervals. Instead of having it mended he would count the number of times the pedals went round and would get off the bicycle in time to adjust the chain by hand. Another of his eccentricities is that he chained his mug to the radiator pipes to prevent it being stolen. Peter Hilton recounted his experience working with Turing in Hut 8 in his "Reminiscences of Bletchley Park" from A Century of Mathematics in America: It is a rare experience to meet an authentic genius. Those of us privileged to inhabit the world of scholarship are familiar with the intellectual stimulation furnished by talented colleagues. We can admire the ideas they share with us and are usually able to understand their source; we may even often believe that we ourselves could have created such concepts and originated such thoughts. However, the experience of sharing the intellectual life of a genius is entirely different; one realizes that one is in the presence of an intelligence, a sensibility of such profundity and originality that one is filled with wonder and excitement. Alan Turing was such a genius, and those, like myself, who had the astonishing and unexpected opportunity, created by the strange exigencies of the Second World War, to be able to count Turing as colleague and friend will never forget that experience, nor can we ever lose its immense benefit to us. Hilton echoed similar thoughts in the Nova PBS documentary Decoding Nazi Secrets. While working at Bletchley, Turing, who was a talented long-distance runner, occasionally ran the 40 miles (64 km) to London when he was needed for meetings,and he was capable of world-class marathon standards.Turing tried out for the 1948 British Olympic team but he was hampered by an injury. His tryout time for the marathon was only 11 minutes slower than British silver medallist Thomas Richards' Olympic race time of 2 hours 35 minutes. He was Walton Athletic Club's best runner, a fact discovered when he passed the group while running alone. In 1946, Turing was appointed an Officer of the Order of the British Empire (OBE) by King George VI for his wartime services, but his work remained secret for many years.

Bombe

Within weeks of arriving at Bletchley Park,Turing had specified an electromechanical machine called the bombe, which could break Enigma more effectively than the Polish bomba kryptologiczna, from which its name was derived. The bombe, with an enhancement suggested by mathematician Gordon Welchman, became one of the primary tools, and the major automated one, used to attack Enigma-enciphered messages. A complete and working replica of a bombe now at The National Museum of Computing on Bletchley Park The bombe searched for possible correct settings used for an Enigma message (i.e., rotor order, rotor settings and plugboard settings) using a suitable crib: a fragment of probable plaintext. For each possible setting of the rotors (which had on the order of 1019 states, or 1022 states for the four-rotor U-boat variant),the bombe performed a chain of logical deductions based on the crib, implemented electromechanically.tion needed] The bombe detected when a contradiction had occurred and ruled out that setting, moving on to the next. Most of the possible settings would cause contradictions and be discarded, leaving only a few to be investigated in detail. A contradiction would occur when an enciphered letter would be turned back into the same plaintext letter, which was impossible with the Enigma. The first bombe was installed on 18 March 1940. By late 1941, Turing and his fellow cryptanalysts Gordon Welchman, Hugh Alexander and Stuart Milner-Barry were frustrated. Building on the work of the Poles, they had set up a good working system for decrypting Enigma signals, but their limited staff and bombes meant they could not translate all the signals. In the summer, they had considerable success, and shipping losses had fallen to under 100,000 tons a month; however, they badly needed more resources to keep abreast of German adjustments. They had tried to get more people and fund more bombes through the proper channels, but had failed. On 28 October they wrote directly to Winston Churchill explaining their difficulties, with Turing as the first named. They emphasised how small their need was compared with the vast expenditure of men and money by the forces and compared with the level of assistance they could offer to the forces.As Andrew Hodges, biographer of Turing, later wrote, "This letter had an electric effect."Churchill wrote a memo to General Ismay, which read: "ACTION THIS DAY. Make sure they have all they want on extreme priority and report to me that this has been done." On 18 November, the chief of the secret service reported that every possible measure was being taken.The cryptographers at Bletchley Park did not know of the Prime Minister's response, but as Milner-Barry recalled, "All that we did notice was that almost from that day the rough ways began miraculously to be made smooth."More than two hundred bombes were in operation by the end of the war

Hut 8 and the naval Enigma

Turing decided to tackle the particularly difficult problem of German naval Enigma "because no one else was doing anything about it and I could have it to myself".In December 1939, Turing solved the essential part of the naval indicator system, which was more complex than the indicator systems used by the other services. That same night, he also conceived of the idea of Banburismus, a sequential statistical technique (what Abraham Wald later called sequential analysis) to assist in breaking the naval Enigma, "though I was not sure that it would work in practice, and was not, in fact, sure until some days had actually broken."For this, he invented a measure of weight of evidence that he called the ban. Banburismus could rule out certain sequences of the Enigma rotors, substantially reducing the time needed to test settings on the bombes.Later this sequential process of accumulating sufficient weight of evidence using decibans (one tenth of a ban) was used in Cryptanalysis of the Lorenz cipher Turing travelled to the United States in November 1942and worked with US Navy cryptanalysts on the naval Enigma and bombe construction in Washington; he also visited their Computing Machine Laboratory in Dayton, Ohio. Turing's reaction to the American bombe design was far from enthusiastic: The American Bombe programme was to produce 336 Bombes, one for each wheel order. I used to smile inwardly at the conception of Bombe hut routine implied by this programme, but thought that no particular purpose would be served by pointing out that we would not really use them in that way. Their test (of commutators) can hardly be considered conclusive as they were not testing for the bounce with electronic stop finding devices. Nobody seems to be told about rods or offiziers or banburismus unless they are really going to do something about it. During this trip, he also assisted at Bell Labs with the development of secure speech devices.He returned to Bletchley Park in March 1943. During his absence, Hugh Alexander had officially assumed the position of head of Hut 8, although Alexander had been de facto head for some time (Turing having little interest in the day-to-day running of the section). Turing became a general consultant for cryptanalysis at Bletchley Park. Alexander wrote of Turing's contribution: There should be no question in anyone's mind that Turing's work was the biggest factor in Hut 8's success. In the early days, he was the only cryptographer who thought the problem worth tackling and not only was he primarily responsible for the main theoretical work within the Hut, but he also shared with Welchman and Keen the chief credit for the invention of the bombe. It is always difficult to say that anyone is 'absolutely indispensable', but if anyone was indispensable to Hut 8, it was Turing. The pioneer's work always tends to be forgotten when experience and routine later make everything seem easy and many of us in Hut 8 felt that the magnitude of Turing's contribution was never fully realised by the outside world.

If you have time, you should read more about Alan Turing. This incredible Hero.